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STABILITY DIAGRAMS FOR MAGNETOGASDYNAMIC CHANNEL FLOW
by

F. D, Hains

ABSTRACT

A st is made of the influence of a coplanar mag-
netic field on the stability of a conducting fluid flowing
between parallel planes, After derivation of the general
stability equations for small magnetic fieynolds number,
numerical results are obtained for the case where initial per-
turbations of the magnetic field vanish, This must occur if the
channel walls have zero or infinite conductivity, Four sets of
stability diagrams are presented so that each stability curve
will represent the effect of a given applied magnetic field
as only one of the four quantities in the Reynolds number is
changed, The flow is always stable for initial disturbances of
the field produced by passage of a pulsating current through walls

of finite conductivity,

This paper was presented at the meeting of the Fluid Dynamics
Division of the American Physical Society on November 23-25, 1964
in Pasadena, California,




NOMENCLATURE

Y
B = magnetic field

wave propagation velocity

19}
H

-
12 = electric field
-
g = current
K =9 u U
w o
N = magnetic interaction parameter
Rm = magynetic Reynolds number E'E; T
pu T
R - Reynolds number
v
a = wave number

SuEerscriEts

~ = dimensional quantity
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1. INTRODUCTION

The effect or a uniform cuplanar maynetin field on the stability

of parabclic flouw of a conducting fluig between parallel walls bas been

the subject cf several inve<tigation.,

(1)

The ctability eguations were
first given by Michael who showed Squire's Theorem is alun applicable

to two-dimensional maynetohydrodyremic flows, In usddition to the Reynolds
number R, *t.9 other nondimensional perameters appear in the eguations:
the magnetic Reynolds riumber Rm, and the interaction parameter N,

Because of the complicated form of the stability equations,
Stuart(z) simplified the equations by assuming Rm is small. The fluid
dynamic and electrodynamic equations are uncoupled because the induced
maynetic field is of second order, Stability curves were obtained for
constant values of the parameter q = Na, where a is the wave number. Un-
fortunately, the drawbacks of this form ss compared to the use of N alone
were not recognized by Stuart until the calculations were well under way.
The curve q = .08 formed a closed loop indicating complete stability above
a certain Reynolds number, Stuart claimed the closure of the curve could
not be verified because the assumption of small Rm was violated at the
higher value: of R, In a discussion of Stuart's paper, Cowlinq(s) said
the existence of a region of stability for large values of R "hardly seems

reasonable",

Using the stability equatior for small Rm given by Stuart,

Rossow(a) solved the problem again and obtained stability curves for ccn-

stant values of the parameter N, The curves shift to higher R with in-
creased N, but do not form closed loops. This suggested the closure of

Stuart's curves was due to the use of the parameter q inste:d of N, This
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was shown te be the case by Hains ,» who cbtained gualitative agreement
between the curves of Rossow and Stuart by crossplotting, The ayreement
is only gualitative berause Rossow used the wrony boundary condition alony
the axis of the charnel, The beundary condition applicable to the outer
ediye of a flat plate boundary layer was used instead ¢f tho conditions
for un antiuymmetric disturbance in a channel, tor this reason, Rossow's
results are not considered in the remainder of this paper.

Because the existing stability Jiagrame are of limited value,
the stability equation for small Rm has been resclved by an exact numeri-
cal methoud. A useful set of stability diagrams plotted for several non-
dimensional parameters is presented in Lhis paper. In addition, this
paper attempts to clarify several points which have led to some confusion
and misunderstanding about the effects of a magnetic field on stability,

The rirst point concerns the derivation of the stability equa-
tions for small Rm. In taking the limit Rm % 0, Stuart neglected a term
of the order of the terms retained, and arrived at an equation which is
specialized for the case where initial or externally produced perturbations
of the magnetic field vanish, This condition is always satisfied by channel
walls that are perfect conductors or insulators, Because Rm is small, the
field influences the flow to first order, but the flow influences the field
only to second order co that first order perturbations of the field can
only be generated by passayw of an oscillatory current through channel
walls of finite conductivity, In an attempt to be more rigorous, Tatsumi(ﬁ)
introduced a new variable but chbtained Scuart's specialized equation., In
effect, he also nejglected first order perturbations of the megnetic field,
In this paper, the general stability equation for small Rm is presented,
and solutions are given for channel walls with zero, infinite and finite

conductivity,



The second point concerny the choice of parameter used to
describe the stability curves, und tie correct interpretation of the
curves for the particul ar parameter chesen, [n scability problems where
the Reynolds number is not the unly nondimensional parameter, Hains(7)
has shown the change in R chould be iiterpreted 2o a variation of only
those quantities not commen to both R and the other nardimensional
parameters, Ffor the parameter g chosen by Stuort, this would meun varia-
tion of the coefficient of viscosity ﬁlto change R, Since Rm is inde-
pendent of E, the assumption of small Rm is not vinlated by variation of
R in this manner, and the closure of Stuart's curves iz ‘herefore correct
if R = R(ﬁ). If, as Stuart assumed, R = R(G;). the clasure of the sta-
bility curves cannot be decided with the present theory because the
assumption of small Rm is viola*ed for laiye values of R, G5ince varia-
tian of‘:; to change R would also change q, some other quantity in g must
vary along each of Stuart's stability curves in order to keep q fixed.
Clearly, some new parameter independent of 3; must be chosen to describe
the stability curves if R = R(G;). In this paper, parameters are intro-

duced which permit variation of each quantity in R individually,



II. STABILITY EQUATIONS

The magnetohydrodynamic equations which govern the flow of an

incompressible, viscous fluid are (in dimensional form):

flow continuitys V.V =0 (1,
Dv - 2 2
Navier-Stokes: 5"1: + Yp = JXB+uvy (2
ct
Ohm's Law: 3 = E[E Y xggj (7
- -
Faraday's Law: VXE = - Qi (4
ot
-
magnet ic continuity: VB = 0 (L
- -+
Ampere's Law: J = VvXxXp (-

where p and o are the viscosity coefficient and electrical conductivit,

respectively, '; is the fluid pressure, P is the density, t is the time
Y

and £ iy the electric field, The components of the magnetic field and

velocity are, respactively:

‘ L d o »
e 8";””—‘18'1—*—'337’* TT ottt s e R (1

- -~ -~

V = iu+ jv (e

<
Elimination 2f € from E£qs. (3) and (4) with the aid of (1), (

and (6) yields

-+

= £V2.B'+B-V§l.--\7
(4]

. Vg (9

% B,

Y
A second equation is obtained by elimination of J from Eqs. (2) and (6)

% R L 1 e " 15 ot g
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p%.vp = (B.%Y)B - "B + TV (10)
Dt

It is convenient to nondimensionalize by defininy the new v.riables

(xyy) = (KN/T bt

P u
a}
~ ’i‘:
(uyv) = (G,V)/5 £ = —t
o T

— o8-t
(8)48,) = (§,5,)/8 N = —=
P u

(s}

- P T
R =ocu_ L R = o
m 0 ~

where L is the channel half-width, and Uy, is the velocity at the axis of
the channel, The tilda (--) indicates a dimensional quantity,
Eqs. (9) and (10) are linearized by assuming small perturbiations

in the dopendent variable of the form

S - S ~ N S ﬂﬂ,,ﬁ{,,,, o

P(x,y) + €3'(x,y,t) (12)

p -

B, =1+ ¢ &lﬂ
1 oy

B = - € M
2 ax

where € is a2 small quantity, These relations automatically satisfy the

continuity €qs. (1) and (5), Assuming solutions of the .eparable form

s e P TR T e
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?(y)exp ia(x - ct) (13)

-€
"

V(y)exp ia(x - ct) (14)
The linearized form of Eqs. (%) and (10) reduce to

Ly, -] - e (15)

D9 = 1aNr(u-c)v-¢.1 (16)

where D is the operator dafined by

- 2 il _ 2g2 4
00 = (U-c)9 -a%) -y o+ (o -mB . a%] (17

The steady-state velocity profile is U=1 - y2. These two coupled equa-

tions are the stahility equations for plane MHD flow with a uniform co-

planar magnetic field. In the remainder of this paper the operator D is

used so that the let hand side of Eq, (16) is expressid simply as D@,
The boundary conditions along the channel walls require tha

velocity components to vanish

- — 4(*#44#1}444,77 —— e e - 18)

If the walls are perfect conductors,
wWxl) = 0 (19)
and if the walls are perfect insulators,

V(+=*® = 0 (20)




For walls of finite conductivity, ‘“he value of V(% 1) takes on some unknown
value found by matching the solution ir the channel to the solution in the
wall,

Because of the complicated form of Eqs. (15) and (16), we re-

strict our attention to the special case of small Rm. Assuming

W = “'O#Rm vlo ese
(21)
P = ¢00Rm¢16 ses
Eqs. (15) and (16) become
v -a%% = 0 (22)
ayy o
= son[(u-c)V_-9_] 23
09, = daN{(U-c)v -9 | (23)

This is the general form of the stability equations tur small Rm.
Stuart(z) obtained a single equation which corresponds to Eq.

(23) without the ﬁb term, It is therefore specialized for the case where

the perturbations in the megnetic field nf the order of '5 vanish, In-

stead of using €q, (15), Stuert performed an order of magnitude analysis

7m5;7thc ;éuution

4‘ v - a
a-§ - o)

$ - (U-c)¥ (24)

e Sl

where ¥ = BOV and ;'= ﬁLﬁ aro gimgngional quantities, By assuming the
terms4; and a,instcad of ¥ and @ were of the same order he neglected the
‘¢ term on the right hand side of Eq. (23) in comparison with the other
terms, £qs. (22) and (23), obtained by assuming ﬁb and ¢ _ are of the same

order, reduce to Stuart's stability equation when *6 = 0O,

B e



In an attempt to be more rigorous in the derivation of the ste-

bility equations, Tatsumi(e)

introduced a new variable
2
= -a 25)
" v&Y v (

and used €q. (15) in the form

n+ (U-c)V (2¢*

§,|.*

to eliminate ¢ from £q. (16), The resultant enuation is

Dn + iaNn = ia(U-c)R_ DY (27)

For small Rm' Tatsumi neglected tke right hand side of Eq. (27) and ob-
tained an equation of the form of Eq. (29) below, He proceeded to outlin
the soiution of the differential equation for the boundary conditions

n = q' = 0 st both houndaries., It is eesy to show, in the limit as Rm :
that Tatsumi's equation is satisfied by n = O, By using Eq. (21) and a
similar power series expension for n, £qs. (26) and (27) ere, to firct

Ord'r,

n =0 (28)

On_ ¢+ ioMg, = O - (29)

The corresponding second order equations are

in
¢, = _a_g + (U - c)Vo (30,

Dn, + qul = 1&:,(U-t:)0*o ‘ (31

1

It is clear that Tatsumi's equation is not squivalent to Stusrt's stebil

BB e e e T — T = T LU,




equaticr becauvse the variable n vanishes for :ero Rpe Much of the con-
fusion results hacause Eq. (29) and Eq. (31) with Wb = 0 have the same
form as Eq. (23) with Wb = 0, These equations are by no means equivalent,
Tatsumi's equation is meaningful only for small values of Rm greater than
zero, while Stuart's equation is valid for Rm = 0 as well., Both stability

equations assume WD = 0, which is a special case,

Tt . . )
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I1T. CHANNEL WITH WALLS OF FINITE CONDUCTIVITY

If the walls have finite conductivity 3;, initial perturbations
of the magnetic field can be induced by passage of a pulsating current 3;
through the walls, In the walls, which extend to y = + ®, the magnetic
field must satisfy Eq. (9) with U = 0, Using Eq. (12) for the field com-

ponents B, and 82. and €q. (14) for the form of the disturbance, Eq. (9)

1

reduces to the form

where

B := - uz + iaKe (33)

This equation applies only when Rm is small, In addition, the nondimension-
parameter K = 3; 3; T is assumed to be of order one.
1f the disturbences are symmetric with respect to the channel

axis, the solutions of Eqs. (22) snd (32) are, respectively,

0<sys] *6 = A Cosh ay (34)

21 %, = BCoafy . (35)

The boundary condition requiring the matching of ¥  and Voy at y = %1

leads to the relation
a tanha = - B tan B (36)

Since a is real and positive, P must also be real. €q. (33) shows c must
be a negative imaginary number since K is positive. The disturbances are

always stable,
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IV, CHANNEL WITH WALLS OF ZERO OR INFINITE CONDUCTIVITY

If the channel walls are perfect conductors (5@ = ®) or perfect
insulators (3; = 0), initial perturbations in the magnetic field must
vanish, Wo can also vanish for walls of finite conductivity if the current
]; is zero, The eigenvalue problem reduces to the solution of Eq. (23)
with WO = 0. The boundary conditions are given by Eq. (18). As is cus-
tomary in the nonmagnetic case, we restrict our analysis to antisymmetrical
disturbances so that ¢ is an even function of y. Integration is only neces-

sary over half the channel if the boundery condition

¢ = @ = 0 (37)

is satisfied at the channel axis,
The problem, as it is presently posed, was first solved by

2)

Stuart( using the Tollmien-Schlichting theery. In this paper, solutions

are obtained by an exact numerical method developed by Hains and Price(a)
for Poiseuille flow between flexible walls, Details of the numerical
method can be found in Reference 8, but a brief outline will be given here.
The numerical solution is bequn by dividing the channel half-width
into n parts of equal length, After introduction of a new dependent vari-
able developed to reduce truncation errors, the differential equation and
boundary conditions are written in finite difference form at each of the
divisicns., The resultant system of linear algebraic equations possesses
a nontrivial solution if, and only if, the determinant of the coefficients
vanishes, This condition determines the eigenvalue c, For each combina-
tion of a, R, N specified, three initial guesses for c are made, and the

value of the determinant for each guess is calculated, A complex quadratic

is passed through these three values, and the root of the quadratic nearest
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the last quess is taken as the new approximation to the eigenvalue. For
n = 50, iteration was continued until the value of the 6eterminant had
been reduced to some preselected value close to zero. The final value of
c is the eigenvalue, This numerical method was programmed for an I1BM 7090
computer using single precision with 8 digits. The values of c given in
this paper are accurate to at least four decimal places. This accuracy
was checked by repeating the calculation of some points with a double pre-
cision preqram carrying 16 digits,

Neutral stability curves for the wave number a and wave propa-
gation velocity c_ are shown in Figs, 1-6. Three sets of curves are pre-

sented for the three nondimensional parameters N, N' and N*, where

N = NR = B‘BD L/n
(38)
Nt = NR = o BB D

Q
-~

Since N is independent of ﬁ; these parameters have been selected so that

N’ is independent of § and G;, and N* is independent of T. Use of all

three parameters to describe the stability curves pebmits the variation

of R to be irterpreted as a change in one of the quantities 5; E;, T or E:
In Figﬁres 1 and 2 where N has been chosen as tie interaction

parameter, a given value of the applied magnetic field will lead to a fixed

value of N if the viscosily is varied to change R, This is indicated by

R = R(ﬁ) along the abscissa of the ligure, As the figures clearly show,

the critical Reynolds number increases with N and the wave propagation

velocity c. decreases with N,

[n a channel Flow experiment, it is customary to increase the

Revnolds number by increasing the flow velocity E;. Stuart also interpreted



17

GE

*N JO saniea

SNoTJen 104 p JI3qunu BAEM 8y3l JOJ S3NIND A31(1Ge}s [rijnay T b1y
() £¥
0} % G¢e 074 Gl
I G0
| 0400
— 90
- ~ [~ - £0
AIIIIIIIIIJIIIIIIIIIIII JIIIIIIIIIII ‘lmwNKVAU
N — 0= .
— 80
[/ , / : 60
/ _ /
IIIIIIIllll%lllllllllllllllllllr .
— 0l
Illllllllll ll\\\\\\\
/
Illllll:lllllll: 'l




GE

I

*N 40 sanien snoiien 3oy

o paads uorjebedoad anem ayj Joy sanand A3TTTgels [eIjnay Z bty
(1) g
€ A 0¢
— 000

/! /,///
Y/

Iy

S
™~

148

or

8l

/A

44

144

9C

8¢

D




_lr)-

*,N Jo sanfen

SNOTJIBA 304 D Jaqunu anem 8Yj 104 sanana A311IQe3s Hmuu:mz ¢ °biy
(°n9) £
o> 0 sz 0T Gl
m;
/ —oosL
S | o.
/ - — 09/ r
/ /
\loom
/ v /NA o=N —|®
- ) .
—— e J
A/{\\ !
_ E—— Il




- 106 -

*, N jo sante

A snoTden 104

anem a 304 sanand A3171Qe3s [eijnay 7 *Bry

o€ 0z Gl
% 40
SN Y
/ﬂ/// — 0081 or0
™~

1 X — 05/ 210

. N\
///\/~ /l/ \. 1 3

//// 4 =N Zz0
N

/////V N ¥Z0

// / 9Z0

A,




*xN JU sanjun

SNOTJeA JO4 D I8QuwNu 3nem ayj JOj sanans A3171Qe3s [eajnay g b1y
Ew_
0g GZ _ 0z Gl

T~

/

o-0LX9zE |4
9-OLXE

A — oixgz | ®
L -,
//W —— o'l

Il




b

*xN JO sanyea snotaen 10

o paads uvorjebedoad anem ayj 103 saniano A3T1Iqgess TexjnaN m *brgy
(1)ed
0¢ Gl
GE 41> 74 "
/// 910
— // 810
~_ //// 5-01X 92
N // n/// __oixe |0¢0
//7 N\ ;olxse |
/ % /V\r/\ O“_.._.Z

A / vZ0
e 9C0

N\

o)




his stebility curves in the same manner, Instead of using N, or Na ac
Stuart used to describe the curves, the parameter M’ was chosen bLecausc
of its independence of G;. The stability curves are shown in Figs. 3 and
4, The curves ore similar to those for N, but epproach the nonmagnetic
curve N’ = 0 more rapidly with increased R(az B;). Mumerical values of c

1/3

over a range in a and R are given in Table I for some representative
values of N’. Positive values of the imaginary part of c indicate an un-
stable disturbance,

The lost set of curves shown in Figs., 5 and 6 show the effect
of variation of the channel width tfto change the Reynolds number., As N¥*
is increased, the neutral stability curves form closed loops with the
region of instability confined to the interior of the loop., This means
the flow is stable for small channel widths and for large channel widths,
When N* > 3,26 X 10_6, the region of instability disappears and the flow
is stable for all channel widths,

The distribution of the eigenfunction is shown in Figure 7. Only
the real part of ¢ and its first derivative are shown because the imaginary
parts are small in comparison, The magnetic field tends to reduce the
gradients of the velocity perturbations in the region near the wall. Using
the eigenfunction for N = 0, the streamline distribution shown in Figure B
was calculated., For clarity, the bending of the streamlines was greatly
exaggerated by taking € = 1. The antisymmetric form of the disturbance is

clearly evident from this figure,
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V. CONCLUSIONS

A study has been made of the stability of a conducting fluid be-
tween two parallel planes with an aligned magnetic field. When the magnetic
Reynolds number is small, three different methods of producing a disturbance
are possible. The initial disturbance can be in the fluid, in the magnetic
field, or in both simultaneously,

When the channel walls have finite conductivity, a disturbance
of the magnetic field can be introduced by passage of an oscillatory current
through the walls. This in turn causes the fluid to oscillate, but this
type of disturbance is always stable.

Neutral stability curves have been presented for initial distur-
bances produced only in the fluid, The effect of the magnetic field is to
increase stability, but the particular shape of the stability curves
depends on how the Reynolds number is varied., Four sets of stability curves
werevpresented, each corresponding to a variation of one of the four quan-
tities in the Reynolds number, The stability curves form closed loops when
the channel width is varied to change the Reyholds number, The loops dis-
appear and complete stability is obtained when N* 2 3,26 - 10-6. When other
quantities are varied to increase the Reynolds number, the stability curves
are shifted to higher Reynolds number as the interaction paramcter is in-

creased,
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